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Abstract

Cardiac arrest is a fatal condition requiring rapid iden-
tification and intervention. Our team “SHE Lab” de-
velops a deep neural network for automated detection
from single-lead electroencephalogram (EEG) as part of
the ‘Predicting Neurological Recovery from Coma Af-
ter Cardiac Arrest: The George B. Moody PhysioNet
Challenge 2023’. Our model comprises complementary
time-domain and spectral-domain to extract prognostic
biomarkers. The adaptive time-domain convolution block
directly analyzes the EEG waveform. The multi-resolution
wavelet decomposition block captures discriminative spec-
tral bands. Feature fusion integrates this multi-modal in-
formation before final classification. While our team was
unable to be scored on the test set, experiments demon-
strate good performance with accuracy 78.1%, AUROC
0.914, AUPRC 0.942, F1-score 0.841 on our held-out
subset of the training set. Compared to methods based
on multi-lead EEG, our automated single-lead interpreta-
tion model can achieve accessible and scalable monitor-
ing, providing a powerful and universal method to explore
the predictive function of EEG. The proposed biomarkers
demonstrate the low-cost, rapid diagnosis, real-time care
in clinical practice. Therefore, the biomarkers may provide
important value for the prognosis evaluation and timely
treatment of patients with cardiac arrest.

1. Introduction

Cardiac arrest is a life-threatening condition that occurs
when the heart suddenly stops pumping blood to the body’s
vital organs. It is a leading cause of death worldwide, with
survival rates below 10% in out-of-hospital cardiac arrests
even with cardiopulmonary resuscitation (CPR) and defib-
rillation attempts. Rapid and accurate identification of car-
diac arrest is critical to enable early interventions and im-
prove outcomes. Previous studies have shown the utility

of electroencephalography (EEG) in evaluating brain func-
tion and predicting recovery in comatose survivors of car-
diac arrest[1][2]. However, the above studies are all based
on multi-lead EEG data. It is known that multi-lead EEG
data is very expensive to collect compared to single-lead
EEG.

With the development of deep learning, there are emerg-
ing opportunities for automated EEG interpretation. Con-
volutional neural networks (CNNs) can directly analyze
EEG raw signal and perform feature extraction and clas-
sification end-to-end. While multi-lead EEG provides spa-
tial information, single-lead EEG has the advantages of
wide availability and simple acquisition. Effective learn-
ing from single-channel EEG remains a challenge. The
George B. Moody PhysioNet Challenge 2023[3,4] offers a
chance to make progress in predicting outcomes for coma
patients following cardiac arrest by granting access to a
substantial international multicenter database comprising
over 1,000 subjects who collectively underwent more than
50,000 hours of EEG monitoring collected by the Interna-
tional Cardiac Arrest REsearch consortium (I-CARE)[5].

In this study, we develop a deep neural network model
comprising time-domain and frequency-domain blocks
to extract prognostic information relatd biomarker from
single-lead EEG recordings. The adaptive time domain
block performs feature extraction from raw waveform. The
multi-spectral representations block transforms the sig-
nal to spectrogram representations to analyze critical fre-
quency bands. The complementary information is inte-
grated through concatenation before final classification.
Our model aims to accurately predict neurological out-
comes based on early coma EEG after cardiac arrest.
The learned EEG features can potentially inform patient-
specific pathology and recovery processes. This biomarker
has the potential to be used as a clinical biomarker for real-
time monitoring and timely intervention in cardiac arrest
patients.
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2. Method

2.1. Preprocessing

For this challenge, the database[3, 5] consisted of data
from 1,020 adult patients with out-of-hospital or in-
hospital cardiac arrest who recovered cardiac function
(“return of spontaneous circulation”, ROSC) but remained
in a comatose state. All patients were admitted to the ICU
and their body activity was monitored with continuous 18-
channel EEG and 1-channel ECG. Monitoring usually be-
gins within hours of cardiac arrest and continues for hours
to days depending on the patient’s condition. Therefore,
the start time and duration of the record varied for each
individual. The labeling results were determined prospec-
tively by telephone interview (6 months after ROSC) for
clinical outcomes and chart review (3-6 months before
ROSC) for the remaining hospitals. Neurologic function
was also measured using the Cerebral Performance Cate-
gory (CPC) scale.

Figure 1. 300 seconds of EEG signals before and after
preprocessing.

All EEG data were preprocessed using bandpass filter-
ing (0.5-20 Hz) and then resampled to 100 Hz. For the
latest release of raw data, the training process requires 60
to 72 hours of data for training as data augmentation, and
5 minutes of signal with better quality is selected for each
hour. The preprocessing results are shown in Figure 1.

2.2. Network Structure and Experiment

The overall network architecture is shown in Figure 2,
consisting of the following modules: 1) preprocessing, 2)
adaptive time domain block, 3) multi-spectral representa-
tions block, and 4) classification block. The network is
trained end-to-end, jointly optimizing the parameters of
all modules, to extract both temporal-domain and spectral-
domain from the EEG signals simultaneously, improving
classification performance. Our proposed model uses the
RMSprop optimizer with an initial learning rate of 0.001,
batch size of 256. The experiments are implemented using
Python 3.8.15, PyTorch 1.13.1 and NVIDIA 3090 GPU.

Figure 2. The architecture of the temporal-spectral based
single-lead eeg feature fusion network. (a) Preprocessing,
(b) Adaptive Time Domain Block, (c) Multi-Spectral Rep-
resentations Block, (d) Classification Block.

2.3. Adaptive Time Domain Block

CNNs learn low-level representations from waveforms,
whereas traditional filtering functions can discover more
meaningful and effective features. Based on SincNet[6],
which is used in the speech speaker recognition task, the
filter bank is efficiently customized by implementing adap-
tive bandpass filters to learn the low cutoff frequency and
high cutoff frequency directly from the data. The first layer
of the CNN performs a set of time-domain convolutions
between the input waveform and finite impulse response
(FIR) filters. The convolution operation is as follows:

y[n] = x[n] ∗ g[n] =
L−1∑
l=0

x[l] · g[n− l] (1)

where x[n] is the corresponding signal, g[n] is a filter of
length L, and y[n] is the filtered output. The elements of
CNN filter are learned from the row data. Instead, the
adaptive bandpass filter forms a convolution with a pre-
defined function g that depends on only a few learnable
parameters:

y[n] = x[n] ∗ g
′
[n, θ] (2)

where fs denotes the sampling frequency of the input sig-
nal and the cutoff frequency is initialized at random in the
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range [0, fs/2]. And using the cutoff frequency of the
Mayer filter bank to initialize the filter, many key signal
features can be better captured.

In addition, the weights of the filters are trained by sub-
sequent layers so that different levels of importance can be
assigned to the output of each filter. The ideal bandpass
filter needs to be of infinite length, characterized by rip-
ples in the passband and finite attenuation in the stopband.
Therefore, window strategy is adopted, which is achieved
by multiplying the truncation function g with the window-
ing function w. The experiment takes Hamming windows:

w[n] = 0.54− 0.46cos(
2πn

L
) (3)

Hamming windows are particularly well suited to achieve
high frequency selectivity [36]. The overall network struc-
ture is shown in Figure 2(b). The adaptive filter is taken for
convolution, then standard pooling, normalization, activa-
tion and drop out layers are taken. Finally full connectivity
extraction is taken to target the time domain feature extrac-
tion of EEG signals.

2.4. Multi-Spectral Representations Block

Due to the non-stationary nature of EEG, the effective
extraction of EEG spectral components is challenging. In-
spired by Li et al[7]., we introduce a multi-spectral repre-
sentations block (MSR-block) block by using a series of
wavelet convolutions to obtain multi-spectral representa-
tions corresponding to five clinical frequency bands and
further concatenate them into multi-spectral features.

Specifically, MSR-block achieves wavelet decompo-
sition of EEG representations by applying a convolu-
tion operator called Wavelet Convolution (WaveConv).
Daubechies order-4 (Db4) wavelet have high correlation
coefficients with brain signals, have good orthogonality
and efficient filter implementation[8], and do not involve
learnable parameters in WaveConv, so the Db4 wavelet is
chosen for this module for spectral feature extraction. Af-
ter a series of WaveConv layers in MSR-block, the EEG
representation is decomposed into coefficients correspond-
ing to five frequency subbands that satisfy the clinical in-
terest: δ subband (0-4Hz), θ subband (4-8Hz), α sub-
band (8-12Hz), β subband (13-30Hz), and γ subband (30-
50Hz). Assuming the input EEG is X x, the WaveConv at
time sample t is defined as follows:

xA (t) =

R∑
r=0

x (s× t− k)× u (r) (4)

xD (t) =

R∑
r=0

x (s× t− k)× v (r) (5)

The WaveConv uses approximation and detail wavelet
filters u and v to generate approximation and detail co-
efficients xA and xD from EEG signals. The number of
WaveConv layers V depends on sampling rate fs to obtain
5 subbands. WaveConv has stride of 2 and kernel size of
8, matching the Db4 wavelet. xA and xD are computed
together then separated, so output channels are 2R (R is
input channels). xA and xD are separated by formula:

xA = {xw(c)|c = 1, 3, . . . , 2R− 1} (6)
xD = {xw(c)|c = 2, 4, . . . , 2R} (7)

Distortion is reduced by periodic padding on xA. In
summary, WaveConv generates multi-band spectral repre-
sentations of EEG signals. The MSR-block applies Wave-
Conv in parallel to extract spectral features within each
band.

3. Results

Figure 3. Receiver-operating characteristic curves.

Figure 4. Precision-recall curves.

Our proposed model demonstrates good performance
for cardiac arrest detection on the held-out subset of the
training set. We would like to emphasize that our team did
not achieve any scores in both the unofficial and official
phases, all the results reported in this paper were obtained
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Figure 5. Confusion matrix for the outcome prediction for
comatose patients post cardiac arrest.

on the public training set. As shown in Figure 3 and 4,
our model achieves accuracy of 78.1%, F1-score of 0.841,
AUROC of 0.914, AUPRC of 0.942, and a challenge score
of 0.701 on the 20% held-out subset of the training set that
has been data augmented. Additionally, the confusion ma-
trix in Figure 5 provides insight into the true/false positives
and negatives. These results on key classification metrics
reflect the model’s effectiveness at distinguishing cardiac
arrest cases from normal EEG signals. The performance
on our held-out subset of the training set highlights the
potential of our proposed temporal-spectral feature fusion
approach as an effective biomarker for cardiac arrest de-
tection from single-lead EEG.

4. Discussion and Conclusion

Our proposed temporal-spectral feature fusion model
achieves good cardiac arrest detection performance from
single-lead EEG, obtaining good classification metrics on
the held-out subset of the training set. The complemen-
tary time and frequency domain features effectively cap-
ture pathological EEG patterns. Our automated single-lead
EEG interpretation is more convenient and clinically appli-
cable than multi-channel EEG studies, and therefore has
the potential to enable real-time monitoring and timely in-
tervention. The learned representations show potential as
practical biomarkers for rapid and real-time diagnostics.
Although we demonstrate good performance, further val-
idation and extension to out-of-hospital cardiac arrest is
needed to predict more fine-grained outcomes to better as-
sess real-world impact.

In conclusion, we present a deep learning model inte-
grating time-domain and multi-spectral EEG features to
accurately detect cardiac arrest, showing the promise of
automated EEG-based biomarkers. Our adaptive mod-
eling of raw waveform and spectral bands from single-
lead EEG may provide an important step toward patient-
specific assessment and timely treatment. This study may
offer a practical, low-cost and real-time approach to lever-

age EEG’s prognostic capabilities for cardiac arrest care.
Future research may reveal clinically relevant biomarkers
that allow for more accessible neurological prognostica-
tion.
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